Single Image Super-Resolution via Iterative Collaborative Representation

نویسندگان

  • Yulun Zhang
  • Yongbing Zhang
  • Jian Zhang
  • Haoqian Wang
  • Qionghai Dai
چکیده

We propose a new model called iterative collaborative representation (ICR) for image super-resolution (SR). Most of popular SR approaches extract low-resolution (LR) features from the given LR image directly to recover its corresponding high-resolution (HR) features. However, they neglect to utilize the reconstructed HR image for further image SR enhancement. Based on this observation, we extract features from the reconstructed HR image to progressively upscale LR image in an iterative way. In the learning phase, we use the reconstructed and the original HR images as inputs to train the mapping models. These mapping models are then used to upscale the original LR images. In the reconstruction phase, mapping models and LR features extracted from the LR and reconstructed image are then used to conduct image SR in each iteration. Experimental results on standard images demonstrate that our ICR obtains state-of-the-art SR performance quantitatively and visually, surpassing recently published leading SR methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Super-resolution Techniques via Employing Blurriness Information of the Image

Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Single Image Super - Resolution VIA Iterative Back Projection Based Canny Edge Detection and a Gabor Filter Prior

379  Abstract— The Iterative back-projection (IBP) is a classical super-resolution method with low computational complexity that can be applied in real time applications. This paper presents an effective novel single image super resolution approach to recover a high resolution image from a single low resolution input image. The approach is based on an Iterative back projection (IBP) method com...

متن کامل

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

Image Super-Resolution Based on Sparsity Prior via Smoothed l0 Norm

In this paper we aim to tackle the problem of reconstructing a high-resolution image from a single low-resolution input image, known as single image super-resolution. In the literature, sparse representation has been used to address this problem, where it is assumed that both low-resolution and high-resolution images share the same sparse representation over a pair of coupled jointly trained di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015